The impacts of optimization approaches on BEB system configuration in transit

Document Type

Journal Article

Publication Date

2024

Subject Area

place - north america, place - urban, mode - bus, technology - alternative fuels, technology - emissions, infrastructure - vehicle, infrastructure - maintainance, infrastructure - station, economics - capital costs, planning - methods

Keywords

Transit electrification, Battery electric buses, Charging station infrastructure, Charging schedule, Optimization model

Abstract

Battery-electric buses (BEBs) are considered suitable technology for transit to tackle climate change and promote environmentally friendly mobility solutions. However, the systemic configuration of BEBs in transit requires sophisticated planning efforts due to contradictory objectives and decisions. The optimal design of a BEB transit system is often approached from various perspectives, leading to different system configurations and distinct impacts on the electricity grid. Towards that end, this study develops three BEB system configuration optimization models, including minimizing capital costs, electricity costs, and greenhouse gas (GHG) emissions. All three models inform the optimal charging system configuration, BEBs battery capacity, and BEBs charging schedule for a general hub-and-spoke transit network. The proposed models are applied to a case study of the Belleville City, Ontario, Canada, bus transit network. The results demonstrate that BEB system configuration and GHG emissions vary significantly according to the optimization perspective. Moreover, the findings emphasize the importance of using the energy storage system to reduce electricity costs and GHG emissions.

Rights

Permission to publish the abstract has been given by Elsevier, copyright remains with them.

Comments

Transport Policy Home Page:

http://www.sciencedirect.com/science/journal/0967070X

Share

COinS