Shared micromobility as a first- and last-mile transit solution? Spatiotemporal insights from a novel dataset

Document Type

Journal Article

Publication Date

2024

Subject Area

place - north america, place - urban, planning - integration, planning - surveys, planning - methods, ridership - behaviour

Keywords

Micromobility, Public transit, E-scooter, Last-mile problem, Spatiotemporal analysis

Abstract

The first- and last-mile (FM/LM) problem is a major deterrent to public transit use. With the rise of shared micromobility options such as shared e-scooters in recent years, there is a growing interest in understanding their potential to serve as a last-mile transit solution. However, empirical data regarding the integrated use of shared micromobility and public transit have been limited so far. As a result, much is unknown regarding the spatiotemporal patterns and characteristics of shared micromobility trips serving as an FM/LM connection to transit. This paper addresses these knowledge gaps by leveraging a novel dataset (i.e., the Spin post-ride survey dataset) that records thousands of transit-connecting shared e-scooter trips in Washington DC. Specifically, we used the dataset to reveal the spatiotemporal patterns of transit-connecting shared e-scooter trips in Washington DC, resulting in some major policy insights regarding the integral use of shared e-scooters and public transit. We further leveraged the dataset to validate if and to what extent a commonly applied buffer-zone approach can infer FM/LM micromobility trips accurately. Statistical tests showed that the actual FM/LM Spin e-scooter trips differ from inferred FM/LM Spin e-scooter trips in both spatial and temporal dimensions. This indicates that the common practice of inferring FM/LM micromobility trips with a buffer-zone approach can lead to inaccurate estimates of transit-connecting micromobility trips.

Rights

Permission to publish the abstract has been given by Elsevier, copyright remains with them.

Comments

Journal of Transport Geography home Page:

http://www.sciencedirect.com/science/journal/09666923

Share

COinS