Optimal electric bus scheduling method under hybrid energy supply mode of photovoltaic-energy storage system-power grid

Document Type

Journal Article

Publication Date

2024

Subject Area

place - urban, mode - bus, infrastructure - fleet management, infrastructure - vehicle, operations - scheduling, technology - emissions, planning - methods

Keywords

Electric bus, charging

Abstract

Currently, the charging energy of electric buses (EBs) primarily relies on the power grid (PG), and the production of the electricity for the power grid still results in carbon emissions. In recent years, a remarkable development has been observed in the photovoltaic (PV) technology. If EBs can be charged using electricity generated from PV, it has great potential to significantly reduce carbon emissions for EB systems at the source. Considering the inherent output power fluctuations from PV source, we propose a hybrid electricity supply mode named “Photovoltaic-Energy Storage System-Power Grid” (PV-ESS-PG). Firstly, considering the characteristics of different electricity supply modes, we introduce charging strategies tailored to different scenarios and formulate a cooperative optimization model for EB dispatching and charging plans. Secondly, we decompose this model into two sub-problems: bus dispatching and charging scheduling. To solve these two sub-problems, we employ the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to obtain the optimization results of bus dispatching plan, charging mode, charging start time, and charging duration. Finally, we validate the proposed method using real-world data of EB operation and PV output power. We further analyze the influences of weather conditions, ESS capacity, and EB rated battery capacity on the optimization results. We find that, compared to the conventional unitary power grid electricity supply mode, the proposed method reduces daily charging costs by 25.48% and carbon emissions by 68.71% of the whole bus route.

Rights

Permission to publish the abstract has been given by Elsevier, copyright remains with them.

Comments

Applied Energy Home Page:

http://www.sciencedirect.com/science/journal/03062619

Share

COinS