Parameter Adaptive Research of Automatic Train Control Algorithm Based on Sliding Mode PID

Document Type

Journal Article

Publication Date

2024

Subject Area

place - urban, mode - rail, technology - intelligent transport systems, technology - automatic vehicle monitoring

Keywords

control, positive train control, public transportation, rail, rail transit systems, subway

Abstract

In existing urban rail systems, most trains are operated by automatic control, which places high demands on the control effectiveness of automatic train operation (ATO). In this study, a train operation model considering the response delay is firstly constructed. Subsequently, by analyzing and comparing the existing mainstream research methods, neural network and sliding mode control techniques were selected and incorporated into the speed control of the train. Among them, the dynamic sliding mode technique, is used to optimize the PID control effect of ATO. Single neuron and back propagation (BP) neural network algorithms are applied to the selection of PID control parameters. The study selects the difference between the actual speed of the control train and the target speed as the control objective. Through continuous optimization and iteration of the control parameters, the control accuracy of the train operation was improved. Finally, this study validates and simulates different model control methods using the actual operation data of urban rail transit. The results show that the sliding mode PID control model optimized with BP neural network performs better in terms of error distribution, average error value, and control effect variance under different simulation scenarios, showing good tracking ability and robustness. The related research results are expected to be applied to the initial selection of rail vehicle control parameters, dynamic adaptive operation control, and other fields, providing practical help to rail operators and rail signaling companies.

Rights

Permission to publish the abstract has been given by SAGE, copyright remains with them.

Share

COinS