Real-Time Bus Arrival Time Prediction: Case Study for Jinan, China
Document Type
Journal Article
Publication Date
2013
Subject Area
mode - bus, place - asia, technology - geographic information systems, technology - ticketing systems
Keywords
Bus arrival time prediction, Artificial neural networks, GPS data, AFC data
Abstract
Providing real-time bus arrival information can help to improve the service quality of a transit system and enhance its competitiveness among other transportation modes. Taking the city of Jinan, China, as an example, this study proposes two artificial neural network (ANN) models to predict the real-time bus arrivals, based on historical global positioning system (GPS) data and automatic fare collection (AFC) system data. Also, to contend with the difficulty in capturing the traffic fluctuations over different time periods and account for the impact of signalized intersections, this study also subdivides the collected dataset into a bunch of clusters. Sub-ANN models are then developed for each cluster and further integrated into a hierarchical ANN model. To validate the proposed models, six scenarios with respect to different time periods and route lengths are tested. The results reveal that both proposed ANN models can outperform the Kalman filter model. Particularly, with several selected performance indices, it has been found that the hierarchical ANN model clearly outperforms the other two models in most scenarios.
Read More: http://ascelibrary.org/doi/abs/10.1061/(ASCE)TE.1943-5436.0000589
Rights
Permission to publish the abstract has been given by Journal of Transportation engineering, copyright remains with them.
Recommended Citation
Lin, Y., Yang, X., Zou, N., and Jia, L. (2013). ”Real-Time Bus Arrival Time Prediction: Case Study for Jinan, China.” J. Transp. Eng., 139(11), 1133–1140.