Long-term planning for ring-radial urban rail transit networks

Document Type

Journal Article

Publication Date

2016

Subject Area

place - north america, place - urban, mode - rail, planning - network design, planning - travel demand management, economics - benefits

Keywords

Ring rail transit, Ring-radial transit, Transit networks

Abstract

Extensive work exists on regular rail network planning. However, few studies exist on the planning and design of ring-radial rail transit systems. With more ring transit lines being planned and built in Asia, Europe and the America's, a detailed study on ring transit lines is timely. An analytical model to find the optimal number of radial lines in a city for any demand distribution is first introduced. Secondly, passenger route choice for different rail networks is analyzed, for a many-to-many Origin-Destination (OD) demand distribution, based on a total travel time cost per passenger basis. The routes considered are: (1) radial lines only; (2) ring line only or radial lines and ring line combined; or (3) direct access to a destination without using the rail system. Mathematica and Matlab are used to code the route choice model. A cost-benefit optimization model to identify the feasibility and optimality of a ring line is proposed. Unlike simulations and agent-based models, this model is shown to be easily transferable to many ring-radial transit networks. The City of Calgary is used as an example to illustrate the applicability of each model. The existing urban rail network and trip distribution are major influencing factors in judging the feasibility and optimal location of the ring line. This study shows the potential net benefit of introducing a ring line by assessing changes in passengers’ costs. The changes in passenger cost parameters, such as ride cost and access cost, are shown to greatly influence the feasibility of a ring line.

Rights

Permission to publish the abstract has been given by Elsevier, copyright remains with them.

Comments

Transportation Research Part B Home Page:

http://www.sciencedirect.com/science/journal/01912615

Share

COinS