Inference of Public Transportation Trip Destinations by Using Fare Transaction and Vehicle Location Data: Dynamic Programming Approach
Document Type
Journal Article
Publication Date
2017
Subject Area
place - north america, technology - passenger information, technology - geographic information systems, planning - methods, operations - performance
Keywords
Origin–destination matrices, fare transaction, vehicle location data
Abstract
Origin–destination matrices provide vital information for service planning, operations planning, and performance measurement of public transportation systems. In recent years, methodological advances have been made in the estimation of origin–destination matrices from disaggregate fare transaction and vehicle location data. Unlike manual origin–destination surveys, these methods provide nearly complete spatial and temporal coverage at minimal marginal cost. Early models inferred destinations on the basis of the proximity of possible destinations to the next origin and disregarded the effect of waiting time, in-vehicle time, and the number of transfers on path choice. The research reported here formulated a dynamic programming model that inferred destinations of public transportation trips on the basis of a generalized disutility minimization objective. The model inferred paths and transfers on multileg journeys and worked on systems that served a mix of gated stations and ungated stops. The model is being used to infer destinations of public transportation trips in Boston, Massachusetts, and is producing better results than could be obtained with earlier models.
Rights
Permission to publish the abstract has been given by Transportation Research Board, Washington, copyright remains with them.
Recommended Citation
Sánchez-Martínez, G.E. (2017). Inference of Public Transportation Trip Destinations by Using Fare Transaction and Vehicle Location Data: Dynamic Programming Approach. Transportation Research Record: Journal of the Transportation Research Board, Vol. 2612, pp. 1-7.