Train timetabling with dynamic and random passenger demand: A stochastic optimization method

Document Type

Journal Article

Publication Date

2021

Subject Area

place - asia, place - urban, mode - subway/metro, mode - rail, operations - scheduling, ridership - demand, planning - methods

Keywords

Urban rail transit, Train timetable, Stochastic optimization, Variable neighborhood search algorithm

Abstract

Considering the dynamics and randomness of passenger demand, this paper investigates a train timetabling problem in the stochastic environment for an urban rail transit system. With the scenario-based representation of passenger distribution, an integer nonlinear programming (INLP) model is first formulated to simultaneously optimize the total number of train services, headway settings and speed profile selection decision during the planning time horizon, in which the expected total service cost is treated as the objective function. Through an analysis of the features of the nonlinear constraints, a reformulation method is proposed to develop an equivalent integer linear programming (ILP) model that can be easily solved by commercial software. Moreover, a variable neighborhood search algorithm is developed to find the approximate optimal solutions for large-scale problems within the tolerable computing time. Finally, two sets of numerical experiments, with the operation environments of a simple urban rail transit line and Fuzhou Metro Line 1, are implemented to verify the solution quality and effectiveness of the proposed methods.

Rights

Permission to publish the abstract has been given by Elsevier, copyright remains with them.

Comments

Transportation Research Part C Home Page:

http://www.sciencedirect.com/science/journal/0968090X

Share

COinS