Scheduling multimodal alternative services for managing infrastructure maintenance possessions in railway networks

Document Type

Journal Article

Publication Date

2021

Subject Area

mode - bus, mode - rail, operations - scheduling, place - europe, planning - integration, planning - methods

Keywords

Railway disruption, Maintenance, Possessions, Timetable, Alternative services, Mixed integer linear programming, Column generation, Resilience

Abstract

Highly utilized railway networks require regular infrastructure maintenance. Different track sections often need to be closed for entire days to carry out engineering works, which makes the regular timetables no longer feasible and thus adjusted railway services and temporary alternative services need to be planned. We introduce the Multimodal Alternative Services for Possessions (MASP) problem to support the planning of alternative services, from the passenger and transport operator points of view, including an adjusted train timetable, bus-bridging services and extra train services. The MASP problem is formulated based on the Service Network Design Problem and the Vehicle Routing Problem. To solve it efficiently, we develop a solution framework that incorporates heuristics based on the column and row generation with mixed-integer linear programming. The developed framework provides the optimized alternative service routes, schedules and passenger flows routing. We demonstrated the performance of the MASP solution framework on the real-life Dutch railway network. The results show that the MASP framework is capable of efficiently generating alternative services to route passenger flows affected by possessions with a very limited increase in the total passenger costs compared to a scenario with no link closures. High computational efficiency is observed even for highly disrupted networks.

Rights

Permission to publish the abstract has been given by Elsevier, copyright remains with them.

Comments

Transportation Research Part B Home Page:

http://www.sciencedirect.com/science/journal/01912615

Share

COinS