Short-Term Metro Ridership Prediction During Unplanned Events

Document Type

Journal Article

Publication Date

2022

Subject Area

mode - rail, mode - subway/metro, ridership - demand, ridership - modelling, planning - methods, technology - passenger information, technology - ticketing systems

Keywords

public transportation, rail transit systems, subway, transformative trends in transit data, big data, smart card data

Abstract

Unplanned events present significant challenges for operations and management in metro systems. Short-term ridership prediction can help agencies to better design contingency strategies under unplanned events. Though many short-term prediction methods have been proposed in the literature, most studies focused on typical situations or planned events. The study develops methods for the short-term metro ridership prediction under unplanned events. It explores event impact representation mechanisms and deals with the imbalanced data training problem in building the prediction model under unplanned events. Typical machine learning and deep learning methods are developed for exploration. A large-scale automatic fare collection (AFC) dataset and event record data for a heavily used metro system are used for empirical studies. The analysis found that the same type of unplanned event shares a similar and consistent demand change pattern (with respect to the demand under typical situations) at the station level. The synthetic minority oversampling technique (SMOTE) can enrich the ridership observations under unplanned events and generate a balanced dataset for model training. Given the occurrence of unplanned events, the results show that a combination of demand change ratio and the SMOTE oversampling technique enables the prediction models to learn the impact of unplanned events and improve the prediction accuracy under unplanned events. However, the oversampling methods (i.e., SMOTE and replication) slightly deteriorate the prediction accuracy for ridership under normal conditions. The findings provide insights into mechanisms for disruption impact representation and oversampling imbalanced data in model training, and guide the development of models for short-term prediction under unplanned events.

Rights

Permission to publish the abstract has been given by SAGE, copyright remains with them.

Share

COinS