Estimating on-board passenger comfort in public transport vehicles using incomplete automatic passenger counting data

Document Type

Journal Article

Publication Date

2023

Subject Area

mode - bus, mode - rail, mode - tram/light rail, place - europe, operations - crowding, planning - service level, technology - passenger information, technology - automatic vehicle monitoring

Keywords

crowding, on-board comfort

Abstract

The prevention of crowding inside buses, trams and trains is an important component of on-board passenger comfort and is central to the provision of good public transport services. In light of the COVID-19 pandemic and the associated significant reduction in public transport patronage and, more importantly, in passenger confidence, the avoidance of crowds by passengers and operators alike becomes even more critical. This is where the provision of information on on-board comfort becomes a necessity. The present study, therefore, proposes a new Kalman filter based estimation scheme for on-board comfort levels, employing historical and current (same-day) non-exhaustive Automatic Passenger Counting data, as well as Automatic Vehicle Locating measurements. The accuracy and reliability of the estimation is, then, evaluated through application to the tramway network of the French city of Nantes. The results suggest that the proposed method is able to deliver good estimation accuracy, both in terms of absolute passenger numbers, but also, more crucially, in terms of on-board comfort Levels of Service.

Rights

Permission to publish the abstract has been given by Elsevier, copyright remains with them.

Comments

Transportation Research Part C Home Page:

http://www.sciencedirect.com/science/journal/0968090X

Share

COinS