Analysis of energy consumption for electric buses based on low-frequency real-world data
Document Type
Journal Article
Publication Date
2023
Subject Area
mode - bus, technology - alternative fuels, planning - methods
Keywords
Energy consumption, electric bus, real-world data
Abstract
Energy consumption management is a referential approach to alleviate range anxiety. In this paper, the data-driven modeling and analysis of energy consumption based on low-frequency real-world electric bus data is implemented. Specifically, two quantitative metrics of energy consumption are identified and calculated regarding to the characteristics of low-frequency real-world data. Also, the Road-Driver-Vehicle-Ambient factors system is proposed, forming a comprehensive digital description of the driving process. Supervised learning models with different levels of complexity are then established to predict the energy consumption, with the mean absolute percentage error of 9.2%, 7.5% and 7.7% respectively. Last but not least, the relationship between each factor and energy consumption is explained through quantitative, qualitative and statistical analysis, which intuitively shows the influence of Temperature, Driver/Vehicle-related and Road-related factors on energy consumption.
Rights
Permission to publish the abstract has been given by Elsevier, copyright remains with them.
Recommended Citation
Xu, Z., Wang, J., Lund, P. D., & Zhang, Y. (2023). Analysis of energy consumption for electric buses based on low-frequency real-world data. Transportation Research Part D: Transport and Environment, 122, 103857.
Comments
Transportation Research Part D Home Page:
http://www.sciencedirect.com/science/journal/13619209